The Phase 2a ROCKET trial investigating OV101 (gaboxadol) in adolescents and young adults with Fragile X syndrome

Dejan Budimirovic1, Anna Lee2*, Kelli C. Dominick3, Nicole Tartaglia4, Elizabeth Berry-Kravis5

1Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA; 2Ovid Therapeutics Inc., New York, NY, USA; 3Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; 4University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO, USA; 5Rush University Medical Center, Chicago, IL, USA

*Was an employee at Ovid Therapeutics Inc. at the time of abstract submission.

Disclosures: Dr. Budimirovic has nothing to disclose. Dr. Lee holds stock and/or stock options in Ovid Therapeutics Inc. Dr. Dominick has received research support from Ovid Therapeutics Inc., and Roche. Dr. Tartaglia has received personal compensation for consulting, serving on a scientific advisory board, speaking, or other activities with Ovid Therapeutics Inc. Dr. Tartaglia has received research support from Ovid Therapeutics Inc., Zymerga, and Roche. Dr. Berry-Kravis has nothing to disclose.

Acknowledgements: We would like to thank all the patients and their families for their participation in this research. Writing and editorial support, funded by Ovid Therapeutics Inc. (New York, NY, USA), was provided by Gian Greenberg, PhD, and Anne Cooper, MA, of Ashfield Healthcare Communications (Middletown, CT, USA). L. Maxwell Adams, PharmD, and Mathews Adera, MD, employees of Ovid Therapeutics Inc. (New York, NY, USA) provided data interpretation for this research.

Funding: The study has been funded by Ovid Therapeutics Inc.
INTRODUCTION: Fragile X Syndrome Prevalence, Mechanism of Disease, Symptomatology, and Treatment

Fragile X Syndrome

- Fragile X syndrome (FXS) is the leading genetic cause of inherited intellectual disability and autism spectrum disorder, with a prevalence of up to 1 in 2500 males and 1 in 6000 females\(^1\)\(^2\)

- FXS is caused by a mutation of the fragile X mental retardation 1 (FMR1) gene, resulting in a deficit or absence of fragile X mental retardation protein (FMRP)\(^3\)

- Individuals with FXS present with a broad range of neurocognitive and neurobehavioral limitations, such as intellectual disability, language impairment, attentional network symptoms, autism spectrum disorder, social withdrawal and avoidance, anxiety symptoms, repetitive and stereotyped behaviors, perseverative speech, as well as aggressive and/or self-injurious behaviors\(^3\)\(^4\)
 - Symptoms vary widely in severity, although they tend to be more severe in males than in females, and may depend on the magnitude of the FMRP deficit\(^5\)

- Current treatments for FXS consist of a combination of non-pharmacological interventions and symptom-based use of pharmacological agents\(^6\)

OV101 (gaboxadol)

- OV101 (gaboxadol) is a δ-subunit–selective extrasynaptic γ-aminobutyric acid (GABA) type A (GABA\(_{δ}\)) receptor agonist (Figure 1)\(^7\)

INTRODUCTION: ROCKET Trial Rationale and Objectives

Study Rationale

- Evidence from Fmr1 knockout (KO) mice supports the role of GABA, the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS\(^1,2\)
 - Fmr1 KO mice have decreased GABA\(_A\) receptor \(\delta\) subunit expression, decreased GABA synthesis, and decreased levels of GABA, resulting in decreased tonic inhibition (Figure 2)\(^1,3\)
 - Gaboxadol restored tonic inhibition in the amygdala, reduced sensory hypersensitivity and motor hyperactivity, and improved pre-pulse inhibition in Fmr1 KO mice\(^1\)
 - Gaboxadol normalized hyperactivity as well as repetitive, social, and anxiety-like behavior in Fmr1 KO2 mice, another murine model of FXS\(^4\)
- The present signal-finding Phase 2a ROCKET trial (ClinicalTrials.gov identifier: NCT03697161) explored effects of multiple dosing regimens of gaboxadol in males aged 13 to 22 years with FXS

Study Objectives

- Primary: evaluate safety and tolerability of gaboxadol in males aged 13 to 22 years with FXS over 12 weeks of treatment across different daily dosing regimens
- Secondary: evaluate the effect of gaboxadol on changes in behavior in males aged 13 to 22 years with FXS over 12 weeks of treatment across different daily dosing regimens
- Exploratory: evaluate other efficacy outcomes (eg, changes in sleep, adaptive functioning, quality of life) in males aged 13 to 22 years with FXS across different daily dosing regimens and explore associations between factors (eg, gaboxadol plasma levels, metabolomic biomarkers, clinical presentation, evoked resting potential [ERP], microbiomes); perform population pharmacokinetic (PK) and PK-pharmacodynamic (PD) analysis and evaluate possible acute rebound phenomena (eg, sleep disruption or behavioral problems) following discontinuation of treatment

METHODS: Design of ROCKET Phase 2a Trial in Fragile X Syndrome

Study Design

- Phase 2a, randomized, double-blind, parallel-group study (Figure 3)
 - Eligible males aged 13 to 22 years with FXS were enrolled at 8 sites in the United States and 1 site in Israel (Table 1)
 - Target enrollment: ≤36 participants
- Allocation 1:1:1 of gaboxadol 5 mg once daily, 5 mg twice daily, or 5 mg thrice daily for 12 weeks; stratified by age group (adolescents, aged 13 to 17 years; adults, aged 18 to 22 years; 1:1 allocation)
 - All participants received study drug thrice daily: gaboxadol in the morning, and gaboxadol or placebo in the afternoon and evening

Figure 3. Study Design

<table>
<thead>
<tr>
<th>Clinic visits</th>
<th>Gaboxadol 5 mg QD (5 mg/day)</th>
<th>Gaboxadol 5 mg BID (10 mg/day)</th>
<th>Gaboxadol 5 mg TID (15 mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GBOXADOL 5 mg QD</td>
<td>GBOXADOL 5 mg BID</td>
<td>GBOXADOL 5 mg TID</td>
</tr>
<tr>
<td>Week</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

BID, twice daily; EOS, end of study; EOT, end of treatment; QD, once daily; TID, thrice daily.
METHODS: ROCKET Trial Key Inclusion and Exclusion Criteria

Table 1. Key Inclusion and Exclusion Criteria

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Male, aged 13–22 years, inclusive</td>
<td>• Concomitant gastrointestinal, renal, hepatic, endocrine, respiratory, or cardiovascular system disease or condition of a degree that would limit participation in the study</td>
</tr>
<tr>
<td>• Diagnosis of FXS with FMR1 full mutation (>200 CGG repeats) confirmed prior to participant randomization</td>
<td>• Clinically significant laboratory abnormalities or vital signs at screening</td>
</tr>
<tr>
<td>• CGI-S score of 4 (moderately ill) or more at screening</td>
<td>• Regularly uses GABAergic agent</td>
</tr>
<tr>
<td>• Intelligence quotient <75 as measured by the Stanford-Binet-5 at screening</td>
<td>• Cannabinoid derivative use</td>
</tr>
<tr>
<td>• Currently receiving ≤3 antiepileptic and/or psychoactive medications; medications stable for ≥4 weeks prior to randomization and maintained throughout the study duration</td>
<td>• History of uncontrollable seizure disorder or seizure episodes with 6 months of screening or change in anticonvulsant pharmacotherapy within 3 months of screening</td>
</tr>
<tr>
<td>• Able to take oral study drug</td>
<td>• History of suicidal behavior or at high risk of suicide</td>
</tr>
<tr>
<td>• Caregiver capable of providing informed consent, overseeing study drug administration, attending scheduled study visits, and providing feedback</td>
<td>• Participation in any clinical trial or use of any investigational agent, device, and/or procedure within 30 days of screening</td>
</tr>
<tr>
<td>• Willing to remain sexually abstinent from first day of screening through 30 days after last dose of study treatment</td>
<td>• Unable to comply with study requirements</td>
</tr>
<tr>
<td>• Caregiver agrees to refrain from posting any of the participant’s personal medical data related to the study on any website or social media platform until conclusion of the study</td>
<td>• Family member of investigator or study site personnel</td>
</tr>
</tbody>
</table>

CGG, cytosine-guanine-guanine; CGI-S, Clinical Global Impressions–Severity; FMR1, fragile X mental retardation 1; FXS, Fragile X syndrome; GABA, γ-aminobutyric acid.
METHODS: Study Endpoints for Safety, Tolerability, and Efficacy

Study Endpoints

Primary Safety and Tolerability Endpoints
- Treatment-emergent adverse events (TEAEs), treatment-related TEAEs, TEAEs leading to study discontinuation, and serious adverse events (SAEs)

Secondary Efficacy Endpoints
- Changes from baseline in Aberrant Behavior Checklist–Community (ABC-C) total and subscale scores; ABC-C factor score for FXS (ABC-CFXS); Clinical Global Impressions (CGI)–Severity (CGI-S) and CGI–Improvement (CGI-I) scores; Anxiety, Depression, and Mood Scales (ADAMS) subscale scores; Repetitive Behavior Scale–Revised (RBS-R) total and subscale scores; Conners 3rd Edition subscale scores; and Short Sensory Profile 2 total and subscale scores

Exploratory Efficacy Endpoints
- **Direct participant assessment**: actigraphy parameters for sleep, including sleep onset latency (SOL), wake time after sleep onset (WASO), sleep fragmentation, number of nocturnal awakenings, total sleep time (TST), sleep efficiency, and daily activity level; mean change from baseline in Test of Attentional Performance for Children (KiTAP) subtest scores; mean change from baseline in Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) subtest scores
- **Caregiver completed**: change from baseline in Behavior Assessment System for Children, 3rd Edition, Parenting Relationship Questionnaire (BASC-3 PRQ) subscale scores; Parent Global Impressions (PGI)–Severity (PGI-S) and PGI–Improvement (PGI-I) scores; Pediatric Quality of Life Inventory (PedsQL) total and subscale scores; Children’s Sleep Habits Questionnaire (CHSQ) total and subscale scores; sleep diary parameters, including SOL, WASO, TST, and daytime sleepiness, defined as duration of napping in the daytime
- **Clinician completed**: change from baseline in top 3 concerns visual analog scale; Vineland Adaptive Behavior Scale, 3rd Edition (VABS-3), overall composite and subscale scores; Pediatric Sleep CGI-S and Pediatric Sleep CGI-I scores
- **Other Exploratory Endpoints**: mean change from baseline in ERP response; change from baseline in microbiomes and biomarkers; plasma gaboxadol concentrations at sampling time points
METHODS: Statistical Analysis

Statistical Analysis

- Summaries of subject disposition, demographics, and other baseline characteristics are described from the randomized analysis set, which comprised all randomly assigned subjects.
- All safety data analyses were conducted on the safety set, which included all subjects who received ≥1 dose of study drug.
- Efficacy analyses were performed from the full-analysis set (FAS), which comprised all randomly assigned subjects who received ≥1 dose of study drug and had ≥1 post-baseline efficacy assessment.
RESULTS: Demographics and Baseline Clinical Characteristics

Demographics and Baseline Clinical Characteristics

- Twenty-three (23) patients were randomized in the study (Figure 4)
- Demographic and baseline clinical characteristics are summarized in Table 2

Figure 4. Study Flow of Patients

Gaboxadol 5 mg QD
n=7
Discontinued n=1
• Withdrew consent
Completed study n=6
(85.7%)

Gaboxadol 5 mg BID
n=8
Discontinued n=1
• Adverse event
Completed study n=7
(87.5%)

Gaboxadol 5 mg TID
n=8
Discontinued n=1
• Withdrew consent
Completed study n=7
(87.5%)

Table 2. Demographic and Baseline Clinical Characteristics by Treatment (Randomized Patients)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Gaboxadol 5 mg QD</th>
<th>Gaboxadol 5 mg BID</th>
<th>Gaboxadol 5 mg TID</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (male participants), n</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>Adolescents, n*</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Adults, n†</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Age, years</td>
<td>17.0 (3.46)</td>
<td>16.5 (2.93)</td>
<td>17.5 (3.35)</td>
<td>17.0 (3.12)</td>
</tr>
<tr>
<td>Race, Black or African-American, n (%)</td>
<td>0 (0.0)</td>
<td>1 (12.5)</td>
<td>0 (0.0)</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td>Race, Native Hawaiian or Other Pacific Islander, n (%)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (12.5)</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td>Race, White, n (%)</td>
<td>7 (100)</td>
<td>7 (87.5)</td>
<td>6 (75.0)</td>
<td>20 (87.0)</td>
</tr>
<tr>
<td>Race, Other, n (%)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>1 (12.5)</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td>Baseline weight, kg</td>
<td>85.10 (25.03)</td>
<td>76.89 (31.86)</td>
<td>84.16 (35.02)</td>
<td>81.92 (29.97)</td>
</tr>
<tr>
<td>Baseline height, cm</td>
<td>171.77 (6.30)</td>
<td>170.39 (10.46)</td>
<td>168.43 (12.72)</td>
<td>170.05 (10.09)</td>
</tr>
<tr>
<td>Patient IQ score in percentiles</td>
<td>41.7 (4.11)</td>
<td>40.5 (0.93)</td>
<td>42.3 (4.10)</td>
<td>41.5 (3.29)</td>
</tr>
<tr>
<td>DSM-5 autism spectrum disorder criteria, n (%)</td>
<td>7 (100)</td>
<td>6 (75.0)</td>
<td>6 (75.0)</td>
<td>19 (82.6)</td>
</tr>
</tbody>
</table>

Data presented as mean (SD) unless otherwise specified.

*BID, twice daily; DSM-5, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; IQ, intelligence quotient; QD, once daily; SD, standard deviation; TID, three times daily.

BID, twice daily; QD, once daily; TID, three times daily.
RESULTS: Safety Assessed From Adverse Events

Safety

- TEAEs were reported in 16 (69.6%) of gaboxadol-treated patients (Table 3)
- TEAEs occurring in ≥2 patients included diarrhea, irritability, headache, and upper respiratory tract infection

Table 3. TEAEs, Treatment-related TEAEs, TEAEs Leading to Study Discontinuation, and SAEs From Baseline to Week 12 by Treatment (Safety Set)

<table>
<thead>
<tr>
<th>Event, n (%)</th>
<th>Gaboxadol 5 mg QD n=7</th>
<th>Gaboxadol 5 mg BID n=8</th>
<th>Gaboxadol 5 mg TID n=8</th>
<th>Total N=23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with any TEAE</td>
<td>2 (28.6)</td>
<td>8 (100)</td>
<td>6 (75.0)</td>
<td>16 (69.6)</td>
</tr>
<tr>
<td>Severity of TEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>2 (28.6)</td>
<td>7 (87.5)</td>
<td>6 (75.0)</td>
<td>15 (65.2)</td>
</tr>
<tr>
<td>Moderate</td>
<td>0 (0.0)</td>
<td>1 (12.5)</td>
<td>0 (0.0)</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td>Severe</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>TEAEs occurring in ≥2 patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>2 (25.0)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Irritability</td>
<td>0 (0.0)</td>
<td>1 (12.5)</td>
<td>1 (12.5)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>Headache</td>
<td>0 (0.0)</td>
<td>3 (37.5)</td>
<td>0 (0.0)</td>
<td>3 (13.0)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>0 (0.0)</td>
<td>3 (37.5)</td>
<td>1 (12.5)</td>
<td>4 (17.5)</td>
</tr>
<tr>
<td>Patients with any treatment-related TEAE</td>
<td>1 (14.3)</td>
<td>5 (62.5)</td>
<td>2 (25.0)</td>
<td>8 (34.0)</td>
</tr>
<tr>
<td>Patients with any AE leading to study discontinuation</td>
<td>0 (0.0)</td>
<td>1 (12.5)</td>
<td>0 (0.0)</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td>Patients with any SAE</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

AE, adverse event; BID, twice daily; QD, once daily; SAE, serious adverse event; TEAE, treatment-emergent adverse event; TID, three times daily.
RESULTS: Across Gaboxadol Dosing Groups, Significant Improvements Were Observed in ABC-C\textsubscript{FXS} and ADAMS Total Scores

Efficacy: ABC-C\textsubscript{FXS} and ADAMS

- Across dosing groups, significant improvement was observed from baseline to Week 12 in ABC-C\textsubscript{FXS} total score (Figure 5; $P=0.0017$) and ADAMS total score (Figure 6; $P=0.0039$)
 - In ABC-C\textsubscript{FXS} subscales, patients showed significant improvements from baseline to Week 12 in lethargy/social withdrawal, hyperactivity, stereotypic behavior, and irritability, but not social avoidance or inappropriate speech subscales
 - In ADAMS subscales, patients also showed statistically significant mean improvements from baseline to Week 12 in manic/hyperactive behavior, social avoidance and general anxiety, but not compulsive behavior or depressed mood subscales

Figure 5. Change From Baseline to Week 12 in ABC-C\textsubscript{FXS} Total Score

![Graph showing percent improvement in ABC-C\textsubscript{FXS} total score](image)

Figure 6. Change From Baseline to Week 12 in ADAMS Total Score

![Graph showing mean change in ADAMS total score](image)

Data presented as mean change (SD) unless otherwise specified; sample sizes (n) were different in the study population due to patients who discontinued later in the study.

*Individuals with minimal behavior symptoms as measured by the ABC-C scale (defined as baseline ABC-C total score ≤16) were prespecified to be excluded from this planned analysis. Six individuals from the total cohort of 23 patients met this exclusion criteria.

ABC-C\textsubscript{FXS}: Aberrant Behavior Checklist–Community for Fragile X syndrome; BID, twice daily; ADAMS, Anxiety, Depression, and Mood Scales; QD, once daily; SD, standard deviation; TID, three times daily.
RESULTS: Across Gaboxadrol Dosing Groups, Significant Improvement Was Observed in CGI-S, and 60% of Participants Were Identified as CGI-I Responders

Efficacy: CGI-S and CGI-I

- Across dosing groups, statistically significant improvement was observed from baseline to Week 12 in CGI-S total score (Figure 7; \(P=0.002 \))
- In CGI-S subscales, statistically significant mean improvements were observed from baseline to Week 12 in communication, anxiety, attention deficit hyperactivity disorder, and activities of daily living domains, but not disruptive behavior and repetitive or restrictive behaviors domains.
- Compared to baseline measurements, 60% of participants who received gaboxadrol were identified as CGI-I responders at Week 12 (Figure 8; defined as improvement in CGI-I by a response of “2-Much Improved” [40%], or “3-Minimally Improved” [20%]).

Figure 7. Change From Baseline to Week 12 in CGI-S Total Score

Figure 8. CGI-I Score at Week 12

Data presented as mean change (SD) unless otherwise specified; sample sizes (n) were different in the study population due to patients who discontinued later in the study.

BID, twice daily; CGI-I, Clinical Global Impressions–Improvement; Clinical Global Impressions–Severity; QD, once daily; TID, three times daily.
CONCLUSIONS

The ROCKET Phase 2a clinical trial investigated gaboxadol in adolescents and young adult males with FXS

The trial met its primary endpoint of safety and tolerability

• Gaboxadol appeared to be well tolerated over 12 weeks of treatment across all 3 dosing regimens

Improvements from baseline to end of treatment were observed from several efficacy endpoints when examined across dosing groups

• Across dosing groups, significant improvements were observed from baseline to Week 12 in ABC-CFXS, ADAMS, and CGI-S total scores, and 60% of participants were identified as CGI-I responders

Additional analyses are ongoing

A limitation to extrapolating these results was the absence of a placebo group and the potential for placebo effects on behavioral measures, as large placebo effects have been observed in FXS patients from previous trials\(^1\)

• Larger placebo effects have been observed in open-label studies than in placebo-controlled trials in patients with intellectual disability

The results suggest that gaboxadol holds potential to be a therapeutic option for individuals with FXS, and they may help inform future placebo-controlled trials of gaboxadol for FXS